
©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.6.5 Demonstrating Polymorphic

Processing (cont.)

• Line 41 creates the vector employees, which contains three
Employee pointers.

• Line 44 aims employees[0] at object
salariedEmployee.

• Line 45 aims employees[1] at object
commissionEmployee.

• Line 46 aims employees[2] at object
basePlusCommissionEmployee.

• The compiler allows these assignments, because a
SalariedEmployee is an Employee, a
CommissionEmployee is an Employee and a
BasePlusCommissionEmployee is an Employee.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.6.5 Demonstrating Polymorphic

Processing (cont.)

• Lines 54–55 traverse vector employees and invoke function
virtualViaPointer (lines 67–71) for each element in
employees.

• Function virtualViaPointer receives in parameter
baseClassPtr (of type const Employee * const) the address
stored in an employees element.

• Each call to virtualViaPointer uses baseClassPtr to invoke
virtual functions print (line 69) and earnings (line 70).

• Note that function virtualViaPointer does not contain any
SalariedEmployee, CommissionEmployee or
BasePlusCommissionEmployee type information.

• The function knows only about base-class type Employee.

• The output illustrates that the appropriate functions for each class are
indeed invoked and that each object’s proper information is displayed.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.6.5 Demonstrating Polymorphic

Processing (cont.)

• Lines 61–62 traverse employees and invoke function
virtualViaReference (lines 75–79) for each vector element.

• Function virtualViaReference receives in its parameter
baseClassRef (of type const Employee &) a reference to the
object obtained by dereferencing the pointer stored in each
employees element (line 62).

• Each call to virtualViaReference invokes virtual functions
print (line 77) and earnings (line 78) via baseClassRef to
demonstrate that polymorphic processing occurs with base-class
references as well.

• Each virtual-function invocation calls the function on the object to
which baseClassRef refers at runtime.

• This is another example of dynamic binding.

• The output produced using base-class references is identical to the
output produced using base-class pointers.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.7 (Optional) Polymorphism, Virtual

Functions and Dynamic Binding “Under the

Hood”
• This section discusses how C++ can implement polymorphism,
virtual functions and dynamic binding internally.

• This will give you a solid understanding of how these capabilities
really work.

• More importantly, it will help you appreciate the overhead of
polymorphism—in terms of additional memory consumption and
processor time.

• You’ll see that polymorphism is accomplished through three
levels of pointers (i.e., ―triple indirection‖).

• Then we’ll show how an executing program uses these data
structures to execute virtual functions and achieve the
dynamic binding associated with polymorphism.

• Our discussion explains one possible implementation; this is not
a language requirement.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.7 (Optional) Polymorphism, Virtual

Functions and Dynamic Binding “Under the

Hood” (cont.)
• When C++ compiles a class that has one or more virtual

functions, it builds a virtual function table (vtable) for that class.

• The vtable contains pointers to the class’s virtual functions.

• Just as the name of a built-in array contains the address in memory
of the array’s first element, a pointer to a function contains the
starting address in memory of the code that performs the function’s
task.

• An executing program uses the vtable to select the proper function
implementation each time a virtual function of that class is
called.

• The leftmost column of Fig. 12.18 illustrates the vtables for classes
Employee, SalariedEmployee, CommissionEmployee
and BasePlusCommissionEmployee.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.7 (Optional) Polymorphism, Virtual

Functions and Dynamic Binding “Under the

Hood” (cont.)
Employee Class vtable

• In the Employee class vtable, the first function pointer is set to
0 (i.e., the nullptr), because function earnings is a pure
virtual function and therefore lacks an implementation.

• The second function pointer points to function print, which
displays the employee’s full name and social security number.

• Any class that has one or more null pointers in its vtable is an
abstract class.

• Classes without any null vtable pointers are concrete classes.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.7 (Optional) Polymorphism, Virtual

Functions and Dynamic Binding “Under the

Hood” (cont.)

SalariedEmployee Class vtable

• Class SalariedEmployee overrides function earnings to
return the employee’s weekly salary, so the function pointer
points to the earnings function of class
SalariedEmployee.

• SalariedEmployee also overrides print, so the
corresponding function pointer points to the
SalariedEmployee member function that prints
"salaried employee: " followed by the employee’s name,
social security number and weekly salary.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.7 (Optional) Polymorphism, Virtual

Functions and Dynamic Binding “Under the

Hood” (cont.)

CommissionEmployee Class vtable

• The earnings function pointer in the vtable for class
CommissionEmployee points to
CommissionEmployee’s earnings function that returns
the employee’s gross sales multiplied by the commission rate.

• The print function pointer points to the
CommissionEmployee version of the function, which
prints the employee’s type, name, social security number,
commission rate and gross sales.

• As in class SalariedEmployee, both functions override
the functions in class Employee.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.7 (Optional) Polymorphism, Virtual

Functions and Dynamic Binding “Under the

Hood” (cont.)
BasePlusCommissionEmployee Class vtable

• The earnings function pointer in the vtable for class
BasePlusCommissionEmployee points to the
BasePlusCommissionEmployee’s earnings
function, which returns the employee’s base salary plus gross
sales multiplied by commission rate.

• The print function pointer points to the
BasePlusCommissionEmployee version of the
function, which prints the employee’s base salary plus the
type, name, social security number, commission rate and gross
sales.

• Both functions override the functions in class
CommissionEmployee.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.7 (Optional) Polymorphism, Virtual

Functions and Dynamic Binding “Under the

Hood” (cont.)

Three Levels of Pointers to Implement Polymorphism

• Polymorphism is accomplished through an elegant data
structure involving three levels of pointers.

• We’ve discussed one level—the function pointers in the vtable.

• These point to the actual functions that execute when a
virtual function is invoked.

• Now we consider the second level of pointers.

• Whenever an object of a class with one or more virtual
functions is instantiated, the compiler attaches to the object a
pointer to the vtable for that class.

• This pointer is normally at the front of the object, but it isn’t
required to be implemented that way.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.7 (Optional) Polymorphism, Virtual

Functions and Dynamic Binding “Under the

Hood” (cont.)

• In Fig. 12.18, these pointers are associated with the
objects created in Fig. 12.17.

• Notice that the diagram displays each of the object’s
data member values.

• The third level of pointers simply contains the

handles to the objects that receive the

virtual function calls.

• The handles in this level may also be

references.

• Fig. 12.18 depicts the vector employees that

contains Employee pointers.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

