Employees processed individually using static binding:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00

earned $800.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

Employees processed polymorphically using dynamic binding:
Virtual function calls made off base-class pointers:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00

earned $800.00

Fig. 12.17 | Employee class hierarchy driver program. (Part 5 of 7.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

Fig. 12.17 | Employee class hierarchy driver program. (Part 6 of 7.)

©1992-2014 by Pearson Education, Inc. All

Rights Reserved.

Virtual function calls made off base-class references:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: 800.00

earned $800.00

commission employee: Sue Jones

social security number: 333-33-3333

gross sales: 10000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis

social security number: 444-44-4444

gross sales: 5000.00; commission rate: 0.04; base salary: 300.00
earned $500.00

Fig. 12.17 | EmpTloyee class hierarchy driver program. (Part 7 of 7.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Demonstrating Polymorphic
Processing (cont.)

Line 41 creates the vector emp loyees, which contains three
Emp 1 oyee pointers.

Line 44 aims emp loyees[O] at object
salariedEmployee.

Line 45 aims emp loyees[1] at object
commissionEmployee.

Line 46 aims employees[2] at object
basePlusCommissionEmployee.

The compiler allows these assignments, because a
SalariedEmpl o¥ee /SanEmp1 o¥ee, a
CommissionEmployee /sanEmployee and a
BasePlusCommissionEmployee isanEmployee.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Demonstrating Polymorphic
Processing (cont.)

Lines 54-55 traverse vector employees and invoke function
virtualviaPointer (lines 67-71) for each element in

emp loyees.

Function virtualviaPointer receives in parameter
baseClassPtr (of type const Employee * const) the address
stored in an emp 1oyees element.

Each call to virtualviaPointer uses baseClassPtr to invoke
virtual functions print (line 69) and earnings (line 70).

Note that function virtualviaPointer does not contain any
Salariedemployee, CommissionEmployee or
BasePlusCommissionEmployee type information.

The function knows only about base-class type Emp 1oyee.

The output illustrates that the appropriate functions for each class are
indeed invoked and that each object’s proper information is displayed.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Lines 61-62 traverse emp 1oyees and invoke function
virtualviaReference (lines 75-79) for each vector element.

Function virtualviaReference receives in its parameter
baseClassRef (of type const Employee &) a reference to the
object obtained by dereferencing the pointer stored in each

emp loyees element (line 62).

Each call to virtualviaReference invokes virtual functions
print (line 77) and earnings (line 78) via baseClassRef to
demonstrate that polymorphic processing occurs with base-class
references as well.

Each vi rtual-function invocation calls the function on the object to
which baseClassRef refers at runtime.

This is another example of dynamic binding.

The output produced using base-class references is identical to the
output produced using base-class pointers.

12.7 (Optional) Polymorphism, Virtual
Functions and Dynamic Binding “Under the
Hood"”

This section discusses how C++ can implement polymorphism,
virtual functions and dynamic binding internally.

This will give you a solid understanding of how these capabilities
really work.

More importantly, it will help you appreciate the overhead of
polymorphism—in terms of additional memory consumption and
processor time.

You’ll see that polymorphism 1s accomplished through three
levels of pointers (1.e., “triple indirection”).

Then we’ll show how an executing program uses these data
structures to execute virtual functions and achieve the
dynamic binding associated with polymorphism.

Our discussion explains one possible implementation; this is not
a language requirement.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.7 (Optional) Polymorphism, Virtual
Functions and Dynamic Binding “Under the
Hood” (cont.)

When C++ compiles a class that has one or more virtual
functions, it builds a virtual function table (vzable) for that class.

The vtable contains pointers to the class’s virtual functions.

Just as the name of a built-in array contains the address in memory
of the array’s first element, a pointer to a function contains the

starting address in memory of the code that performs the function’s
task.

An executing program uses the vZable to select the proper function
implementation each time a virtual function of that class is
called.

The leftmost column of Fig. 12.18 illustrates the viables for classes
Employee, SalariedEmployee, CommissionEmployee
and BasePlusCommissionEmployee.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.7 (Optional) Polymorphism, Virtual
Functions and Dynamic Binding “Under the

Hood” (cont.)

Employee Class vtable

* Inthe Employee class viable, the first function pointer is set to
0 (i.e., the nul 1ptr), because function earnings is a pure
virtual function and therefore lacks an implementation.

« The second function pointer points to function print, which
displays the employee’s full name and social security number.

« Any class that has one or more null pointers in its viableis an
abstract class.

 Classes without any null vtab/e pointers are concrete classes.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.7 (Optional) Polymorphism, Virtual
Functions and Dynamic Binding “Under the

Hood” (cont.)

SalariedEmployee Classvtable

« Class SalariedEmployee overrides function earnings to
return the employee’s weekly salary, so the function pointer
points to the earnings function of class
SalariedEmployee.

« SalariedEmployee also overrides print, so the
corresponding function pointer points to the _
SalariedEmployee member function that prints

"salaried employee: " followed by the employee’s name,
social security number and weekly salary.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

(abstract class)
Employee vtable

earnings 0O (0 indicates pure virtual function)

. rint
First last +— 1" o
SSNI ...

SalariedEmployee salariedEmployee

viable
earnings
klysal -
reeklysatary John Smith vector < Employee * >
i 111-11-1111
t .
salaried 1¢- $800. 00 employees{ 1);
employee: ... i
o] &salaried-
Employee
CommissionEmployee commissionEmployee [1] &commission-
viable Employee WHM
grossSales-qungs. &basePlus-
* commissionRate Sue Jones Commission-
print 333-33-3333 Employee
commission - ————— £10,000.00
.06

employee:

basePTusCommi ssionEmployee

BasePlusCommissionEmployee
viable ’
-

baseSalary + earnings
ggmsssaks P o (L

comni ssionRate print 444444444
base- A4————we $5,000.00 .
salaried - 04
comnri ss1on $300.00
employee: ...

baseCl P
Flow of Virtual Function Call baseClassPtr->print() asetlassPie

When baseClassPtr Points to Object commissionEmployee
pass &ommissionEmployee get to commissionEmployee execute print for
to baseClassPtr viable commissionEmployee
get to commissionEmployee get to print pointer
object in vtable

Fig. 12.18 | How virtual function calls work.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.7 (Optional) Polymorphism, Virtual
Functions and Dynamic Binding “Under the
Hood” (cont.)

commissionEmployee Classvtable

« The earnings function pointer in the viabl/e for class
CommissionEmployee points to
CcommissionEmployee’s earnings function that returns
the employee’s gross sales multiplied by the commission rate.

« The print function pointer points to the
CommissionEmployee version of the function, which
prints the employee’s type, name, social security number,
commission rate and gross sales.

« Asinclass SalariedEmployee, both functions override
the functions in class Emp loyee.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.7 (Optional) Polymorphism, Virtual
Functions and Dynamic Binding “Under the
Hood” (cont.)

BasePlusCommissionEmployee Classvtable

« The earnings function pointer in the viable for class
BasePlusCommissionEmployee points to the
BasePlusCommissionEmployee’s earnings
function, which returns the employee’s base salary plus gross
sales multiplied by commission rate.

« The print function pointer points to the
BasePlusCommissionEmployee version of the
function, which prints the employee’s base salary plus the
type, name, social security number, commission rate and gross
sales.

* Both functions override the functions in class
CommissionEmployee.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.7 (Optional) Polymorphism, Virtual
Functions and Dynamic Binding “Under the
Hood” (cont.)

Three Levels of Pointers to Implement Polymorphism

* Polymorphism Is accomplished through an elegant data
structure involving three levels of pointers.

* We’ve discussed one level—the function pointers in the viable.

 These point to the actual functions that execute when a
virtual function is invoked.

* Now we consider the second level of pointers.

* Whenever an object of a class with one or more virtual
functions Is Instantiatea, the compiler attaches to the object a
pointer to the viable for that class.

* This pointer is normally at the front of the object, but it 1sn’t
required to be implemented that way.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

12.7 (Optional) Polymorphism, Virtual
Functions and Dynamic Binding “Under the
Hood” (cont.)

In Fig. 12.18, these pointers are associated with the
objects created in Fig. 12.17.

Notice that the diagram displays each of the object’s
data member values.

The third level of pointers simply contains the
handles to the objects that receive the
virtual function calls.

The handles in this level may also be
references.

Fig. 12.18 depicts the vector employees that

©1992-2014 bé’iaﬁin Education, Inc. All

contains Emp loyee pointers.

